高考数学解题技巧

时间:2024-07-14 19:07:51
高考数学解题技巧15篇

高考数学解题技巧15篇

高考数学解题技巧1

  心理上的准备。

将自己十几年的苦读浓缩在2个小时中,难免会心情紧张,而心理的平静,即“考试中的平常心”是将自己水平正常发挥的重要基础,所以要做好充分的心理上的调节和准备。拿到试卷后切忌匆匆作答,而应通览全卷,在最短的时间内把握好针对自己学习水平的易、中、难题,做到初步的心中有数,另外不一定按照题目的序号顺序解题,而应在刚才的基础上选择自己最容易得分的题目进行解答,将分值拿到手,稳定自己的心理,同时对自己的思维进行热身,使自己的思维活动尽快达到高峰,不应过于计较暂时性的“一城一地”的得失,防止进入“熟悉知识的死亡牛角尖”,急躁,造成心态的失衡,大脑一片空白,使得原来非常熟悉的知识和题目出现不应有的错误。

方法和策略的准备。

在答题的过程中,应十分注意对试卷中不同题型的把握,采取相应的处理方法。对于选择题,由于答案已经给出(在四个选项中),有相当大的提示性,所以应充分利用分析选项的方法,提炼选项中蕴藏的丰富的信息,使用排除、验证、转化、分析、估算、极限等方法帮助自己进行甄别,以及特殊值法,特殊位置法,特殊图形(数形结合)等方法,尽量的降低运算量和思维量,切忌“考场上的小题大做”,造成时间上和思维上的浪费;对于填空题,由于没有过程的要求,所以要求运算精简、准确、一步到位,公式定理使用得当熟练,思维严密,答案追求数值精准,全面。解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求“表达的准确、考虑的周密、书写的规范、语言的科学”,写清得分点,清楚地呈现自己的思维层次。否则会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;立体几何证明题中注意定理使用的条件要缺一不可,不能疏漏等等。解答题应注意“大题小做,大题细作”。

另外,注意“快慢结合,合理把握时间”。

慢主要体现在审题方面,看题要清,审题要透彻,合理方面脚步,防止错看,漏看,从一定义上说:“成在审题,败在审题”。快主要是解答要快速准确,一步到位,尽量减少反工检查的时间。总体时间的把握上,在保证选填的基础上,要留出充分的时间放在解答题上,保证充分的思维时空,另外还应预留时间对把握不足的题目进行复查。

高考数学解题技巧2

一、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。

二、特殊化法

当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。

三、数形结合法

"数缺形时少直观,形缺数时难入微。"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

四、等价转化法

通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。

数学里常用的几种经典解题方法介绍:

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

高考数学解题技巧3

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法 ……此处隐藏13690个字……得出结果的方法。

5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学解题技巧13

1.三角变换与三角函数的性质问题

解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2.解三角形问题

解题方法:

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3.数列的通项、求和问题

解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

4.离散型随机变量的均值与方差

解题思路:

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

答题步骤:

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

5.圆锥曲线中的范围问题

解题思路;①设方程;②解系数;③得结论。

答题步骤:

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

6.解析几何中的探索性问题

解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。

答题步骤:

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。

高考数学解题技巧14

一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.先易后难。

2.先熟后生。

3.先同后异。先做同科同类型的题目。

4.先小后大。先做信息量少、运算量小的题目,为解决大题赢得时间。

5.先点后面。高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。

6.先高后低。即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。在以快为上的前提下,要稳扎稳打,步步准确。假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊,化抽象为具体。对不能全面完成的题目有两种常用方法:

1.缺步解答。将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。

2.跳步解答。若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

高考数学解题技巧15

在审题时要注意题目中给出的条件,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都从题目条件出发,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”.

步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。

步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!

最后要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。

《高考数学解题技巧15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式